

Tetrahedron Letters 42 (2001) 8071-8073

TETRAHEDRON LETTERS

Lithium perchlorate/diethyl ether catalyzed one-pot synthesis of α -hydrazinophosphonates from aldehydes by a three-component reaction[†]

Akbar Heydari,^{a,*} Abdollah Javidan^b and Mehdi Schaffie^a

^aChemistry Department, Tarbiat Modarres University, PO Box 14155-4838, Tehran, Iran ^bChemistry Department, Imam Hossein University, PO Box 16575-347, Tehran, Iran

Received 27 June 2001; revised 28 August 2001; accepted 7 September 2001

Abstract—Various α -hydrazinophosphonates were prepared on the basis of three-component (aldehydes, *N*,*N*-dimethylhydrazine, and dimethyl(trimethylsilyl)phosphite, coupling reactions via LiClO₄-catalyzed tandem reactions. © 2001 Published by Elsevier Science Ltd.

The addition of nucleophiles to C=N bonds is a synthetically important method of preparing many types of nitrogen-containing compounds of biological importance. Among these, α -amino phosphonates are particularly worth mentioning. As an analog of α -aminoalkylphosphonic acids, α -hydrazinoalkylphosphonic acids and their derivatives are of potential biological importance. For example, several of these compounds show a good safety effect against the phytotoxic action of chloroacetanilide herbicides.1 To the best of our knowledge, only a few examples of the synthesis of α -hydrazinophosphonic acids have been reported: these include the base-catalyzed condensation of diethyl phosphite with aliphatic aldazines followed by subsequent acid hydrolysis² (this method, however, was not suitable for aryl aldazines), a selective reduction of the α -hydrazonophosphonic acids with NaBH₂CN or BH₃·THF,³ nucleophilic substitution of 1-sulfonyloxyalkylphosphonates by hydrazine,⁴ and nucleophilic substitution of 3-methoxy-1,2,3,6-tetrahydropyridazine derivatives by dimethylphosphite in the presence of Lewis acid.⁵

Three-component condensation reactions are interesting and important, not only because two bonds are formed in one-pot, but also because the methodology is useful for making a broad variety of compound libraries. However, it is difficult to extend the Lewis acid-catalyzed three-component condensation to the synthesis of amine derivatives because the strong affinity of many Lewis acids for amino groups does not allow regeneration of the Lewis acids in the reaction.⁶ Moreover, the Lewis acids can be decomposed by the amine and water which are present at the stage of amine derivative formation.⁷ It has been reported that three-component condensation reactions of aldehydes,

Scheme 1.

* Corresponding author.

[†] In memory of Hans Otto Kalinowski.

0040-4039/01/\$ - see front matter @ 2001 Published by Elsevier Science Ltd. PII: S0040-4039(01)01702-6

amines or phenylhydroxylamine and nucleophiles such as O-silvlated keteneacetals, trimethylsilvlcyanide, dimethylphosphite and dimethyl trimethylsilyl phosphite take place in lithium perchlorate/diethyl ether solution (5.0 M) to yield, β -aminoesters,⁸ α -aminoni- α -aminophosphonates,¹⁰ α-cyanohydroxyltriles.⁹ amines11 and N-trimethylsilyloxy- α -aminophosphonates,¹² respectively. Herein, we wish to report that α -hydrazinophosphonates can be prepared in good yields by a new multicomponent synthesis in which a hydrazone (generated in situ from the aldehyde and N,N-dimethylhydrazine) is reacted with dimethyl trimethylsilyl phosphite as a nucleophile, in lithium perchlorate/diethyl ether (LPDE) solution (5.0 M) at room temperature, within 1 h.¹³ It should be noted that a solution of aldehyde the 1, N,N-dimethylhydrazine 2 and dimethyl trimethylsilyl phosphite 3 in diethyl ether remains unchanged after 4 h at room temperature. Several examples of the present three component coupling reactions are summarized in Scheme 1.

This method seems to be a good route to α -alkyl hydrazinophosphonates. However, benzaldehyde, *p*-methoxy-benzaldehyde, 3-pyridine carbaldehyde and cinnamaldehyde are inert to nucleophilic addition of dimethyl trimethylsilyl phosphite in the one-pot three-component reaction.¹⁴ Additionally, we found that hydrazonophosphonation of an aliphatic aldehyde rather than an aromatic was performed with more than 99% selectivity. Thus, the reaction of isobutyraldehyde and 3-pyridine carbaldehyde with *N*,*N*-dimethylhydrazine and dimethyl trimethylsilyl phosphite in 5.0 M LPDE solution give α -hydrazinophosphonate **4** and 3-pyridinehydrazone **5**, respectively.

References

- Diel, P.; Maier, L. Eur. Pat. Appl. EP 1985, 143078; Chem. Abstr. 1985, 103, 215544m.
- (a) Rachon, J.; Wasielewski, C. *Rocz. Chem.* 1976, 50, 477;
 (b) Baraldi, P. G.; Guarneri, M.; Moroder, F.; Pollini, G. P.; Simoni, D. *Synthesis* 1982, 653.
- Yuan, C.; Chen, S.; Xie, R.; Feng, H. Phosphorus, Sulfur, Silicon 1995, 106, 115.
- 4. Yuan, C.; Li, C. Synthesis 1996, 507.
- Kaname, M.; Yoshinaga, K.; Arakawa, Y.; Youshifuji, S. Tetrahedron Lett. 1999, 40, 7993.
- Niimi, L.; Serita, K-i.; Hiraoka, S.; Yokozawa, T. Tetrahedron Lett. 2000, 41, 7075.
- Kobayashi, S.; Akiyama, R.; Kawamura, M.; Ishitani, H. Chem. Lett. 1997, 1039.
- 8. Heydari, A.; Ipaktschi, J. Chem. Ber. 1994, 127, 1761.
- Heydari, A.; Fatemi, P.; Alizadeh, A.-A. *Tetrahedron Lett.* 1998, 39, 3049.
- Heydari, A.; Karimian, A.; Ipaktschi, J. *Tetrahedron* Lett. **1998**, *39*, 5773.
- 11. Heydari, A.; Larijani, H.; Emami, J.; Karami, B. Tetrahedron Lett. 2000, 41, 2471.
- 12. Heydari, A.; Zarei, M.; Alijanianzadeh, R.; Tavakol, H. *Tetrahedron Lett.* 2001, 42, 3629.
- 13. A typical experimental procedure: To a mixture of aldehyde (2 mmol) in 5 M LPDE (4 ml) was added N,N-dimethylhydrazone (2.2 mmol) at room temperature. The mixture was stirred for 5 min and dimethyl trimethylsilyl phosphite (2.2 mmol) was added. The mixture was stirred for 15 min then water was added and the product was extracted with CH₂Cl₂. The organic phase was collected, dried (Na₂SO₄) and evaporated to afford the crude product. The product was purified by flash chromatography (hexan-ethyl acetate). ¹H NMR, ¹³C NMR, IR and

In conclusion, we report a mild and efficient method for preparation of α -hydrazinophosphonate derivatives, that is suitable for a variety of substituted aldehydes. Applications of this methodology to the preparation of enantiomerically enriched α -hydrazinophosphonates and the synthesis of natural products are in progress.

Acknowledgements

Research supported by the National Research Council of I. R. Iran as a National Research project under the number 984.

MS spectra were entirely consistent with the assigned structures. Selected data as follows: **4** (R¹=*i*-propyl): oil ¹H NMR (500 MHz, CDCl₃) δ 3.56 (d, ³J_{P-H}=7 Hz, 3H, OCH₃), 3.54 (d, ³J_{P-H}=7 Hz, 3H, OCH₃), 3.1 (bs, 1H, NH), 2.84 (dd, ²J_{P-H}=14.6 Hz, ²J_{H-H}=4 Hz, 1H, H1), 2.24 (s, 6H, NCH₃), 1.95 (m, 1H, H2), 0.86 (d, ³J_{H-H}=7Hz, 3H, CH₃), 0.81 (d, ³J_{H-H}=7Hz, 3H, CH₃); ¹³C NMR (22.5 MHz, CDCl₃) δ 59.7 (d, ²J_{P-C}=146 Hz, C1), 51.56 (d, ³J_{P-C}=7 Hz, OCH₃), 50.30 (d, ³J_{P-C}=7 Hz, OCH₃), 46.25 (s, NCH₃), 27.2 (s, CH), 18.77 (d, ⁴J_{P-C}=11 Hz, CH₃), 17.11 (d, ⁴J_{P-C}=5 Hz, CH₃): **4** (R¹=tertbutyl): oil ¹H NMR (90 MHz, CDCl₃) δ 3.86 (d, ³J_{P-H}=2.7 Hz, 3H, OCH₃), 3.72 (d, ³J_{P-H}=2.7 Hz, 3H, CH₃), 2.9 (d, ²J_{P-H}=18 Hz, 1H, H1),

2.50 (s, 6H, NCH₃), 1.2 (s, 9H, C(CH₃)₃); ¹³C NMR (125 MHz, CDCl₃): δ 65.39 (d, ²*J*_{P-C} = 141 Hz, C1), 52.25 (d, ³*J*_{P-C} = 7 Hz, OCH₃), 52.20 (d, ³*J*_{P-C} = 7 Hz, OCH₃), 47.50 (s, NCH₃), 34.38 (d, ³*J*_{P-C} = 3 Hz, C₂), 27.82 (d, ⁴*J*_{P-C} = 6.6 Hz, CH₃): **4** (R¹ = *n*-propyl): oil ¹H NMR (500 MHz, CDCl₃): δ 3.67 (d, ³*J*_{P-H} = 5.5 Hz, 3H, OCH₃), 3.65 (d, ³*J*_{P-H} = 5.5 Hz, 3H, OCH₃), 3.65 (d, ³*J*_{P-C} = 153 Hz, C1), 52.78 (d, ³*J*_{P-C} = 7 Hz, OCH₃): δ 55.48 (d, ²*J*_{P-C} = 153 Hz, C1), 52.78 (d, ³*J*_{P-C} = 7 Hz, 3H, OCH₃), 3.131 (s, CH₂), 19.66 (d, *J*_{P-C} = 9 Hz, CH₂), 14.0 (s, CH₃); **4** (R¹ = *c*-hexyl): oil ¹H NMR (500 MHz, CDCl₃): δ 3.71

(d, ${}^{3}J_{P-H} = 8.8 \text{ Hz}$, 3H, OCH₃), 3.69 (d, ${}^{3}J_{P-H} = 8.8 \text{ Hz}$, 3H, OCH₃), 3.41(bs, 1H, NH), 2.95 (dd, ${}^{2}J_{P-H} = 14.6 \text{ Hz}$, ${}^{2}J_{H-H} = 3.5 \text{ Hz}$, 1H, H1), 2.37 (s, 6H, NCH₃), 1.76–1.58 (m, 6H), 1.24–1.18 (m, 5H); ${}^{13}\text{C}$ NMR (125 MHz, CDCl₃): δ 61.22 (d, ${}^{2}J_{P-C} = 146 \text{ Hz}$, C1), 52.68 (d, ${}^{3}J_{P-C} = 7 \text{ Hz}$, OCH₃), 52.47 (d, ${}^{3}J_{P-C} = 7 \text{ Hz}$, OCH₃), 47.77 (s, NCH₃), 38.70 (s, CH), 30.67 (d, $J_{P-C} = 10 \text{ Hz}$, CH₂), 28.9 (d, $J_{P-C} = 3 \text{ Hz}$, CH₂), 26.7 (s, CH₂), 26.6 (s, CH₂), 26.3 (s, CH₂).

14. When a solution of aromatic or heteroaromatic aldehyde and N,N-dimethylhydrazine was treated with dimethyl trimethylsilyl phosphite in LPDE solution (5.0 M) at room temperature for 1 h, the corresponding hydrazone type product was obtained with high yield.